{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "source": [ "## Model Evaluation, Hyperparamter Tuning: Examples and Discussion" ], "metadata": { "id": "eXD8Kc44H6n-" } }, { "cell_type": "markdown", "source": [ "### Loading the dataset" ], "metadata": { "id": "5jwg1bvcIOaE" } }, { "cell_type": "code", "source": [ "import numpy as np\n", "import pandas as pd\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt" ], "metadata": { "id": "mdcKGuROMGql" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 250 }, "id": "BXmOpdq1HoS8", "outputId": "72b5d737-fbc1-4638-e412-e5fcdfcc2228" }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " 0 1 2 3 4 5 6 7 8 \\\n", "0 842302 M 17.99 10.38 122.80 1001.0 0.11840 0.27760 0.3001 \n", "1 842517 M 20.57 17.77 132.90 1326.0 0.08474 0.07864 0.0869 \n", "2 84300903 M 19.69 21.25 130.00 1203.0 0.10960 0.15990 0.1974 \n", "3 84348301 M 11.42 20.38 77.58 386.1 0.14250 0.28390 0.2414 \n", "4 84358402 M 20.29 14.34 135.10 1297.0 0.10030 0.13280 0.1980 \n", "\n", " 9 ... 22 23 24 25 26 27 28 29 \\\n", "0 0.14710 ... 25.38 17.33 184.60 2019.0 0.1622 0.6656 0.7119 0.2654 \n", "1 0.07017 ... 24.99 23.41 158.80 1956.0 0.1238 0.1866 0.2416 0.1860 \n", "2 0.12790 ... 23.57 25.53 152.50 1709.0 0.1444 0.4245 0.4504 0.2430 \n", "3 0.10520 ... 14.91 26.50 98.87 567.7 0.2098 0.8663 0.6869 0.2575 \n", "4 0.10430 ... 22.54 16.67 152.20 1575.0 0.1374 0.2050 0.4000 0.1625 \n", "\n", " 30 31 \n", "0 0.4601 0.11890 \n", "1 0.2750 0.08902 \n", "2 0.3613 0.08758 \n", "3 0.6638 0.17300 \n", "4 0.2364 0.07678 \n", "\n", "[5 rows x 32 columns]" ], "text/html": [ "\n", "
\n", " | 0 | \n", "1 | \n", "2 | \n", "3 | \n", "4 | \n", "5 | \n", "6 | \n", "7 | \n", "8 | \n", "9 | \n", "... | \n", "22 | \n", "23 | \n", "24 | \n", "25 | \n", "26 | \n", "27 | \n", "28 | \n", "29 | \n", "30 | \n", "31 | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "842302 | \n", "M | \n", "17.99 | \n", "10.38 | \n", "122.80 | \n", "1001.0 | \n", "0.11840 | \n", "0.27760 | \n", "0.3001 | \n", "0.14710 | \n", "... | \n", "25.38 | \n", "17.33 | \n", "184.60 | \n", "2019.0 | \n", "0.1622 | \n", "0.6656 | \n", "0.7119 | \n", "0.2654 | \n", "0.4601 | \n", "0.11890 | \n", "
1 | \n", "842517 | \n", "M | \n", "20.57 | \n", "17.77 | \n", "132.90 | \n", "1326.0 | \n", "0.08474 | \n", "0.07864 | \n", "0.0869 | \n", "0.07017 | \n", "... | \n", "24.99 | \n", "23.41 | \n", "158.80 | \n", "1956.0 | \n", "0.1238 | \n", "0.1866 | \n", "0.2416 | \n", "0.1860 | \n", "0.2750 | \n", "0.08902 | \n", "
2 | \n", "84300903 | \n", "M | \n", "19.69 | \n", "21.25 | \n", "130.00 | \n", "1203.0 | \n", "0.10960 | \n", "0.15990 | \n", "0.1974 | \n", "0.12790 | \n", "... | \n", "23.57 | \n", "25.53 | \n", "152.50 | \n", "1709.0 | \n", "0.1444 | \n", "0.4245 | \n", "0.4504 | \n", "0.2430 | \n", "0.3613 | \n", "0.08758 | \n", "
3 | \n", "84348301 | \n", "M | \n", "11.42 | \n", "20.38 | \n", "77.58 | \n", "386.1 | \n", "0.14250 | \n", "0.28390 | \n", "0.2414 | \n", "0.10520 | \n", "... | \n", "14.91 | \n", "26.50 | \n", "98.87 | \n", "567.7 | \n", "0.2098 | \n", "0.8663 | \n", "0.6869 | \n", "0.2575 | \n", "0.6638 | \n", "0.17300 | \n", "
4 | \n", "84358402 | \n", "M | \n", "20.29 | \n", "14.34 | \n", "135.10 | \n", "1297.0 | \n", "0.10030 | \n", "0.13280 | \n", "0.1980 | \n", "0.10430 | \n", "... | \n", "22.54 | \n", "16.67 | \n", "152.20 | \n", "1575.0 | \n", "0.1374 | \n", "0.2050 | \n", "0.4000 | \n", "0.1625 | \n", "0.2364 | \n", "0.07678 | \n", "
5 rows × 32 columns
\n", "